US009256473B1

a2 United States Patent

Volchegursky et al.

US 9,256,473 B1
Feb. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

PROVISION A VIRTUAL ENVIRONMENT
BASED ON TOPOLOGY OF VIRTUAL NODES,
NODE DEPENDENCIES AND BASE NODE
CONFIGURATION INFORMATION

Applicant: EMC Corporation, Hopkinton, MA

(US)

Inventors: Dmitry Volchegursky, Pleasanton, CA
(US); Dmitry Limonov, Dublin, CA
(US); Boris Shpilyuck, Dublin, CA
(US); Alex Rankov, Danville, CA (US);
Pavel Balan, Pleasanton, CA (US)

Assignee: EMC Corporation, Hopkinton, MA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 468 days.

Appl. No.: 13/627,671

Filed: Sep. 26, 2012

Int. CL.

GO6F 9/50 (2006.01)

GO6F 9/455 (2006.01)

GO6F 9/445 (2006.01)

U.S. CL

CPCcccceee. GO6F 9/5072 (2013.01); GO6F 8/60

(2013.01); GOGF 8/61 (2013.01); GO6F 9/455
(2013.01); GOGF 9/445 (2013.01); GOGF
2009/4557 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/0080413 Al* 4/2006 Oprea GOG6F 8/61
709/220
2008/0163194 Al* 7/2008 Diascccooevnn. GOG6F 9/5077
717/174
2011/0004676 Al* 1/2011 Kawato GOG6F 9/5044
709/221
2011/0035747 Al* 2/2011 Machida ..o 718/100
2011/0209140 Al1* 872011 Scheidel GOG6F 8/61
717172
2012/0005646 Al* 1/2012 Manglikccooni GOG6F 8/60
717/105
2013/0007254 Al* 12013 Friescc...... HO4L 43/0876
709/224
2013/0232497 Al* 9/2013 Jalagam GOG6F 9/5072
718/104
2013/0232498 Al* 9/2013 Mangtani GOG6F 9/5072
718/104

* cited by examiner

Primary Examiner — Emerson Puente

Assistant Examiner — Benjamin Wu

(74) Attorney, Agent, or Firm — Dergosits & Noah, LLP;
Todd A. Noah

57 ABSTRACT

A method for automatically provisioning a virtual computing
environment comprising a plurality of virtual computing
nodes includes provisioning a virtual base node using base
configuration information that includes a base endpoint that
identifies interconnectivity parameters required to communi-
cate with the virtual base node, and storing the base endpoint
in an endpoint registry. The method further includes deter-
mining that a virtual first node depends on the virtual base
node, and receiving the base endpoint from the endpoint
registry. Thereafter, the virtual first node is provisioned using
the received base endpoint and first configuration information
for the virtual first node.

20 Claims, 7 Drawing Sheets

202

PROVISIONING A VIRTUAL BASE NODE USING BASE CONFIGURATION
INFORMATION, WHEREIN THE BASE CONFIGURATION INFORMATION
INCLUDES A BASE ENDPOINT THAT IDENTIFIES INTERCONNECTIVITY

PARAMETERS REQUIRED TO COMMUNICATE WITH THE VIRTUAL BASE NODE

208

K DETERMINING THAT A VIRTUAL FIRST NODE

208

204 Y
STORING THE BASE ENDPOINT
\ IN AN ENDPQINT REGISTRY

vy

DEPENDS ON THE VIRTUAL BASE NODE

Y

RETRIEVING THE BASE ENDPQINT
FROM THE ENDPOINT REGISTRY

Y

210

k RETRIEVED BASE ENDPQINT AND FIRST CONFIGURATION

PROVISIONING A VIRTUAL FIRST NODE USING THE

INFORMATION FOR THE VIRTUAL FIRST NODE

200

US 9,256,473 Bl

Sheet 1 of 7

Feb. 9, 2016

U.S. Patent

suoneoddy
s901n8(]
B9PON
ajoway
wol4 /o]

<=

001

l Anu3 eyeg

ocl

|eusax3 10}

L SoERL
m _{[sainpow
(807) (907) 8zl _Yylo
Anu3 ejeq obeio}g 9ct
eleq /
welboid
— 144’ 144"
@11) \ sweibold | |/
aoepaU| uonesiddy
uonEedIuNWWOoY
PN walsAg
o _— |ezl | [BuseRdo | 4oy
ssydepy _owmmwwwn_ vy |«
[—— — — Kejdsiq
_] sl .|_
| ozl | Soig
ImTTTT T ! BT e
_ —
\;_ feidsig ! - (911) wod
! Jewexy | Kedsiq
VEL) 1o} oepayy : .
\ fkedsig)

U.S. Patent Feb. 9, 2016 Sheet 2 of 7 US 9,256,473 B1

202 PROVISIONING A VIRTUAL BASE NODE USING BASE CONFIGURATION
INFORMATION, WHEREIN THE BASE CONFIGURATION INFORMATION
K INCLUDES A BASE ENDPOINT THAT IDENTIFIES INTERCONNECTIVITY
PARAMETERS REQUIRED TO COMMUNICATE WITH THE VIRTUAL BASE NODE

204

STORING THE BASE ENDPOINT
AN ENDPOINT REGISTRY 200

206
\ DETERMINING THAT A VIRTUAL FIRST NODE

DEPENDS ON THE VIRTUAL BASE NODE

208
\ RETRIEVING THE BASE ENDPOINT

FROM THE ENDPOINT REGISTRY

210 PROVISIONING A VIRTUAL FIRST NODE USING THE
\ RETRIEVED BASE ENDPOINT AND FIRST CONFIGURATION
INFORMATION FOR THE VIRTUAL FIRST NODE

FIG. 2

U.S. Patent Feb. 9, 2016 Sheet 3 of 7 US 9,256,473 B1

EXECUTION ENVIRONMENT (301)

PROVISIONING SERVICE (300) CONFIG TEMPLATE REPOSITORY
{330)
ENDPOINT REGISTRY (340)
601 DATABASE APP SERVER
. EN%‘Z}?'NT CONFIG CONFIG
(601) TEMPLATE TEMPLATE
(332a) (332b)
l I
601b
601c
332 /

NODE MANAGER (320)

CONFIGURATION INFO (322)

VIRTUAL TOPOLOGY
MANAGER
(310)

PROVISIONING HANDLER
(350)

PROTOCOL LAYER (303)

NETWORK STACK (302)

FIG. 3

U.S. Patent Feb. 9, 2016 Sheet 4 of 7 US 9,256,473 B1

ENTERPRISE

ENTERPRISE (410a)

(410) I

VIRTUAL

VIRTUAL TOPOLOGY
TOPOLOGY (500"
(500)
NETWORK I
C (403) '
MANAGEMENT SERVER NODE
(402)
PROVISIONING
SERVICE
(300)
- T === ""'"'_""—_—_—"“"]
404 | |
I VIRTUAL ENVIRONMENT [VIRTUAL ENVIRONMENT 1 |
' (420)] (420a) I
' |
: NODE NODE I
| (801) (501) |
' |
' |
I [1 |
' |
[

e e o —— ———— — — . — e — — —— — — — ——— i . —— — — —

U.S. Patent Feb. 9, 2016 Sheet 5 of 7 US 9,256,473 B1
Tier 2
(510¢) 'Z':;le d)3
Tier 1 / \
e Node 2 Node 1
(510b) (501c) (501b)
. Base Node A
Base Tier (s01a)
(510a) T
., FIG. 5A
Tier 2 Tier 2
(510¢) Node 2 (510c) Node 2
(501c) (501c)
N N\
Tier 1 Node 1 Tier 1
(510b) (501b) (5100) hode !
(501b)
/ v
Base Tier Bas(eSONfad)e A Base Tier Base Node A
(510a) — (510a) (501a)

500b

_* FIG. 5B

500c j

FiG. 5C

US 9,256,473 B1

Sheet 6 of 7

Feb. 9, 2016

U.S. Patent

g9 '9id

V9 ‘Did

(O7E) AYLSIDIY LNIOJAN3

{OFE) AYLSIOIY LNIOdANT

(PTOY)
¢ Juiodpug (9T09)
A T 3utodpuy
|
| {3T09) q
ulodpu —
| Z1 .+ pu3 | GG
“ |] Vv Jutodpug
l l ! »
_ 1 ! |
_ _ |
(5T09) _ _
(PT0%) T 9PON _ _
€ 9pON | |
! _
l l
(@T0%) (eTos)
T 9pON v 3PON
aseg
(2015) (gots)
(AL CIN 131] aseg

(qT09)
T jutodpug

A

_ (3T09)

_ T 3ulodpug (8109)

| A v lulodpu3

|

! J \A“\ ‘*

_ | - _

|

- |

bl (5709) _

'] zspoN |

_ _

_ _

_ l
(aT0%) (eT03)
T 3poN V SPON

aseg

{q015) {eots)
T 4311 131] aseg

US 9,256,473 B1

Sheet 7 of 7

Feb. 9, 2016

U.S. Patent

ag "oid

(OFE) AYLSIOFY LNIOdANT

J9 ‘Oid

(OVE) AYL1SI93Y LNIOJANT

(qTo9)
— T 3uiodpu3
(5709)
Z uodpug A (eT09)
I v juiodpug
A _ yy
| I [
| | |
] f |
| |]
| [(eT03)
| _ v 3pON
] \ | aseq
(5T09) (qros)
¢ SPON 1 apoN
{2019) (qo15) (e019)
z 1911 T 1911 131 aseg

{3T09) {qT09)
julodpu —
Z luiodpu3 T 1uloapu3 (€709)
4 4 v ulodpuy
I | K
[] [
I	
_ | (etos)
_ _ V 2PON
(3T0%) (GT0%) 95€d
T 3PON 1 9pON
(2019) (q015) {e019)
T 8L 14311 1311 aseg

US 9,256,473 B1

1
PROVISION A VIRTUAL ENVIRONMENT
BASED ON TOPOLOGY OF VIRTUAL NODES,
NODE DEPENDENCIES AND BASE NODE
CONFIGURATION INFORMATION

BACKGROUND

An enterprise computing environment typically includes a
plurality of interconnected computing nodes, which can be
physical and/or virtual nodes. Physical computing nodes, i.e.,
physical machines, can be clustered and/or distributed, that is,
they can physically reside in a single location or be distributed
in several locations, communicatively coupled to one another
by a network, e.g., the Internet or a private network. Virtual
computing nodes, on the other hand, represent physical
machines, and many virtual nodes can typically be hosted by
one physical machine. By virtualizing its computing environ-
ment, an enterprise can more efficiently manage its physical
computing resources. In addition, an enterprise that owns
physical machines can optimize its investment by “renting”
its excess computing capacity to another enterprise which
does not own physical machines.

While the virtualization of a computing environment offers
numerous advantages, provisioning such an environment can
present serious challenges. For instance, many enterprises
require services and applications that rely on other services/
applications, which, in a physical or virtual world, reside in
different physical/virtual computing nodes, such as servers.
Each node must be configured to support its service/applica-
tion. For example, when a node hosts a web application, the
node must be configured as an application server; and when a
node hosts a database service, the node must be configured as
a database server. Accordingly, depending on the hosted ser-
vice/application, each node must be provisioned with specific
parameters that support the hosted service/application.

Moreover, in most cases, the interconnectivity and depen-
dencies between applications and services, and therefore,
between different nodes, can be very complex. For example,
when an application depends on a database service, the appli-
cation server must be able to connect to and/or communicate
with the database server. Accordingly, when provisioning
such an environment, physical or virtual, each node that hosts
a service that depends on another service must be configured
with the correct connectivity information so that the node can
communicate with the other node(s) hosting the other service.

Due to the variety of server specific configurations, and to
the complexity of deployment topologies, provisioning and/
or modifying such an environment, on demand or at runtime,
is a very difficult and error prone task.

BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the subject matter claimed will become
apparent to those skilled in the art upon reading this descrip-
tion in conjunction with the accompanying drawings, in
which like reference numerals have been used to designate
like elements, and in which:

FIG. 1 is a block diagram illustrating an exemplary hard-
ware device in which the subject matter may be implemented;

FIG. 2 is a flow diagram illustrating a method for automati-
cally provisioning a virtual computing environment accord-
ing to an exemplary embodiment;

FIG. 3 is a block diagram illustrating a system for auto-
matically provisioning a virtual computing environment
according to an exemplary embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 illustrates a network in which a system for auto-
matically provisioning a virtual computing environment can
be implemented;

FIGS. 5A, 5B and 5C are block diagrams representing
exemplary network topologies according to an exemplary
embodiment; and

FIGS. 6A-6D are block diagrams illustrating representa-
tions of node provisioning according to an exemplary
embodiment.

DETAILED DESCRIPTION

Methods and systems for automatically provisioning a vir-
tual computing environment comprising a plurality of virtual
computing nodes are disclosed. According to an embodiment,
aprovisioning service is configured to receive a virtual topol-
ogy that defines virtual nodes associated with hierarchical
tiers, and that defines dependencies between the virtual
nodes. Starting with the lowest tier, referred to as a base tier,
the provisioning service provisions a virtual node in the base
tier, referred to as a base node, using configuration informa-
tion specific to the base node. The configuration information
includes a base endpoint that identifies interconnectivity
parameters required to communicate with the base node. In an
embodiment, when the base node is provisioned, the provi-
sioning service copies the base endpoint and stores it in an
endpoint registry.

Once the nodes in the base tier are provisioned, the provi-
sioning service provisions a virtual node(s) in a tier hierar-
chically above the base tier. In an embodiment, for a first
node, the provisioning service can determine that the first
node depends on the base node based on the virtual topology.
When this is the case, the provisioning service can, in an
embodiment, retrieve the base endpoint associated with the
base node from the endpoint registry, and can provision the
first node using the base endpoint and configuration informa-
tion specific to the first node. In an embodiment, the first
node’s configuration information also includes an endpoint
that identifies interconnectivity parameters required to com-
municate with the first node. When the first node is provi-
sioned, the provisioning service copies the associated end-
point and stores it in the endpoint registry.

The provisioning service can be configured, in an embodi-
ment, to proceed in this manner for each of the virtual nodes
in each of the tiers. Accordingly, each of the nodes can be
provisioned automatically according to the virtual topology,
and the endpoint registry stores, in an embodiment, an end-
point for each of the plurality of virtual nodes. Thus, if the
virtual topology is modified, the virtual nodes can be repro-
visioned easily and automatically. For example, when the
dependency of a node is modified from a first node to a second
node, the provisioning service can be configured to automati-
cally retrieve the second node’s endpoint from the registry,
and to reprovision the node using the retrieved endpoint.
Similarly, when a new node is added to the virtual topology
and is provisioned, the new node’s endpoint is stored in the
registry, and can be retrieved to reprovision nodes that depend
on the new node.

Prior to describing the subject matter in detail, an exem-
plary hardware device in which the subject matter may be
implemented shall first be described. Those of ordinary skill
in the art will appreciate that the elements illustrated in FIG.
1 may vary depending on the system implementation. With
reference to FIG. 1, an exemplary system for implementing
the subject matter disclosed herein includes a physical or
virtual hardware device 100, including a processing unit 102,
memory 104, storage 106, data entry module 108, display

US 9,256,473 B1

3

adapter 110, communication interface 112, and a bus 114 that
couples elements 104-112 to the processing unit 102. While
many elements of the described hardware device 100 can be
physically implemented, many if not all elements can also be
virtually implemented by, for example, a virtual computing
node.

The bus 114 may comprise any type of bus architecture.
Examples include a memory bus, a peripheral bus, a local bus,
etc. The processing unit 102 is an instruction execution
machine, apparatus, or device, physical or virtual, and may
comprise a microprocessor, a digital signal processor, a
graphics processing unit, an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), etc.
The processing unit 102 may be configured to execute pro-
gram instructions stored in memory 104 and/or storage 106
and/or received via data entry module 108.

The memory 104 may include read only memory (ROM)
116 and random access memory (RAM) 118. Memory 104
may be configured to store program instructions and data
during operation of device 100. In various embodiments,
memory 104 may include any of a variety of memory tech-
nologies such as static random access memory (SRAM) or
dynamic RAM (DRAM), including variants such as dual data
rate synchronous DRAM (DDR SDRAM), error correcting
code synchronous DRAM (ECC SDRAM), or RAMBUS
DRAM (RDRAM), for example. Memory 104 may also
include nonvolatile memory technologies such as nonvolatile
flash RAM (NVRAM) or ROM. In some embodiments, it is
contemplated that memory 104 may include a combination of
technologies such as the foregoing, as well as other technolo-
gies not specifically mentioned. When the subject matter is
implemented in a computer system, a basic input/output sys-
tem (BIOS) 120, containing the basic routines that help to
transfer information between elements within the computer
system, such as during start-up, is stored in ROM 116.

The storage 106 may include a flash memory data storage
device for reading from and writing to flash memory, a hard
disk drive for reading from and writing to a hard disk, a
magnetic disk drive for reading from or writing to a remov-
able magnetic disk, and/or an optical disk drive for reading
from or writing to a removable optical disk such as a CD
ROM, DVD or other optical media. The drives and their
associated computer-readable media provide nonvolatile
storage of computer readable instructions, data structures,
program modules and other data for the physical or virtual
hardware device 100.

It is noted that the methods described herein can be embod-
ied in executable instructions stored in a computer readable
medium foruse by or in connection with an instruction execu-
tion machine, apparatus, or device, such as a computer-based
or processor-containing machine, apparatus, or device. It will
be appreciated by those skilled in the art that for some
embodiments, other types of computer readable media may
be used which can store data that is accessible by a computer,
such as magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, RAM, ROM, and the like may
also be used in the exemplary operating environment. As used
here, a “computer-readable medium” can include one or more
of any suitable media for storing the executable instructions
of a computer program in one or more of an electronic,
magnetic, optical, and electromagnetic format, such that the
instruction execution machine, system, apparatus, or device
can read (or fetch) the instructions from the computer read-
able medium and execute the instructions for carrying out the
described methods. A non-exhaustive list of conventional
exemplary computer readable medium includes: a portable
computer diskette; a RAM; a ROM; an erasable program-

25

40

45

55

4

mable read only memory (EPROM or flash memory); optical
storage devices, including a portable compact disc (CD), a
portable digital video disc (DVD), a high definition DVD
(HD-DVD™) a BLU-RAY disc; and the like.

A number of program modules may be stored on the stor-
age 106, ROM 116 or RAM 118, including an operating
system 122, one or more applications programs 124, program
data 126, and other program modules 128. A user may enter
commands and information into the device 100 through data
entry module 108. Data entry module 108 may include
mechanisms such as a keyboard, a touch screen, a pointing
device, etc. Other external input devices (not shown) are
connected to the hardware device 100 via external data entry
interface 130. By way of example and not limitation, external
input devices may include a microphone, joystick, game pad,
satellite dish, scanner, or the like. In some embodiments,
external input devices may include video or audio input
devices such as a video camera, a still camera, etc. Data entry
module 108 may be configured to receive input from one or
more users of device 100 and to deliver such input to process-
ing unit 102 and/or memory 104 via bus 114.

A display 132 is also connected to the bus 114 via display
adapter 110. Display 132 may be configured to display output
of device 100 to one or more users. In some embodiments, a
given device such as a touch screen, for example, may func-
tion as both data entry module 108 and display 132. External
display devices may also be connected to the bus 114 via
external display interface 134. Other peripheral output
devices, not shown, such as speakers and printers, may be
connected to the device 100.

The device 100 may operate in a networked environment
using logical connections to one or more remote nodes (not
shown) via communication interface 112. The remote node
may be another physical or virtual computer, a server, a
router, a peer device or other common network node, and
typically includes many or all of the elements described
above relative to the device 100. The communication inter-
face 112 may interface with a wireless network and/or a wired
network. Examples of wireless networks include, for
example, a BLUETOOTH network, a wireless personal area
network, a wireless 802.11 local area network (LAN), and/or
wireless telephony network (e.g., a cellular, PCS, or GSM
network). Examples of wired networks include, for example,
a LAN, a fiber optic network, a wired personal area network,
a telephony network, and/or a wide area network (WAN).
Such networking environments are commonplace in intra-
nets, the Internet, offices, enterprise-wide computer networks
and the like. In some embodiments, communication interface
112 may include logic configured to support direct memory
access (DMA) transfers between memory 104 and other
devices.

In a networked environment, program modules depicted
relative to the device 100, or portions thereof, may be stored
in a remote storage device, such as, for example, on a server.
It will be appreciated that other hardware and/or software to
establish a communications link between the device 100 and
other devices may be used.

It should be understood that the arrangement of device 100
illustrated in FIG. 1 is but one possible implementation and
that other arrangements are possible. It should also be under-
stood that the various system components (and means)
defined by the claims, described below, and illustrated in the
various block diagrams represent logical components that are
configured to perform the functionality described herein. For
example, one or more of these system components can be
realized, in whole or in part, by at least some of the compo-
nents illustrated in the arrangement of device 100. In addition,

US 9,256,473 B1

5

while at least one of these components are implemented at
least partially as an electronic hardware component, and
therefore constitutes a machine, the other components may be
implemented in software, hardware, or a combination of soft-
ware and hardware. More particularly, at least one component
defined by the claims is implemented at least partially as an
electronic hardware component, such as an instruction execu-
tion machine (e.g., a processor-based or processor-containing
machine) and/or as specialized circuits or circuitry (e.g., dis-
crete logic gates interconnected to perform a specialized
function), such as those illustrated in FIG. 1. Other compo-
nents may be implemented in software, hardware, or a com-
bination of software and hardware. Moreover, some or all of
these other components may be combined, some may be
omitted altogether, and additional components can be added
while still achieving the functionality described herein. Thus,
the subject matter described herein can be embodied in many
different variations, and all such variations are contemplated
to be within the scope of what is claimed.

In the description that follows, the subject matter will be
described with reference to acts and symbolic representations
of operations that are performed by one or more devices,
unless indicated otherwise. As such, it will be understood that
such acts and operations, which are at times referred to as
being computer-executed, include the manipulation by the
processing unit of data in a structured form. This manipula-
tion transforms the data or maintains it at locations in the
memory system of the computer, which reconfigures or oth-
erwise alters the operation of the device in a manner well
understood by those skilled in the art. The data structures
where data is maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the subject matter is being
described in the foregoing context, it is not meant to be
limiting as those of skill in the art will appreciate that various
of the acts and operation described hereinafter may also be
implemented in hardware.

To facilitate an understanding of the subject matter
described below, many aspects are described in terms of
sequences of actions. At least one of these aspects defined by
the claims is performed by an electronic hardware compo-
nent. For example, it will be recognized that the various
actions can be performed by specialized circuits or circuitry,
by program instructions being executed by one or more pro-
cessors, or by a combination of both. The description herein
of any sequence of actions is not intended to imply that the
specific order described for performing that sequence mustbe
followed. All methods described herein can be performed in
any suitable order unless otherwise indicated herein or oth-
erwise clearly contradicted by context.

Referring now to FIG. 2, a flow diagram is presented illus-
trating a method for automatically provisioning a virtual
computing environment comprising a plurality of virtual
computing nodes according to an exemplary embodiment.
FIG. 3 is ablock diagram illustrating an exemplary system for
automatically provisioning a virtual computing environment
according to embodiments of the subject matter described
herein. The method illustrated in FIG. 2 can be carried out by,
for example, at least some of the components in the exem-
plary arrangement of components illustrated in FIG. 3. The
arrangement of components in FIG. 3 may be implemented
by some or all of the components of the device 100 of FIG. 1.

FIG. 3 illustrates components that are configured to operate
within an execution environment hosted by a physical or
virtual computer device and/or multiple computer devices, as
in a distributed execution environment. For example, FIG. 4
illustrates a plurality of virtual computing environments 420,

10

15

20

25

30

35

40

45

50

55

60

65

6

420aq that comprise a plurality of virtual computing nodes 501
communicatively coupled to and managed by a management
server node 402. In an embodiment, the virtual computing
environments 420, 4204 can be created in a cloud computing
environment 404 provided by an independent cloud service
provider that leases physical and/or virtual cloud resources to
different private enterprises 410, 4104 for a fee. In that case,
the management server node 402 can be a physical or virtual
cloud resource in the public cloud environment 404 provided
by the independent service provider. Alternatively, the man-
agement server node 402 can be in a demilitarized zone (not
shown) associated with a secure enterprise network of an
enterprise 410, 4104. In an embodiment, the management
server node 402 can be configured to provide an execution
environment configured to support the operation of the com-
ponents illustrated in FIG. 3 and/or their analogs.

Iustrated in FIG. 3 is a provisioning service 300 including
components adapted for operating in an execution environ-
ment 301. The execution environment 301, or an analog, can
be provided by a node such as the management server node
402. The provisioning service 300 can include a configuration
template repository 330 for storing configuration templates
332 for various types of services/applications hosted by the
virtual computing nodes 501, including, for example, a data-
base service, a content management service, an HTTP ser-
vice, a J2ee application service, a mail service, and the like.
The configuration templates 332 can be preloaded into the
repository 330 in an embodiment. Alternatively, or in addi-
tion, in another embodiment, the provisioning service 300
can be configured to receive customized and/or general con-
figuration templates 332 from an enterprise 410 over a public
or private network 403.

According to an embodiment, the provisioning service 300
can also include a virtual topology manager 310 that is con-
figured to receive a virtual topology 500 from an enterprise
410. In an embodiment, the virtual topology 500 is a blueprint
of the virtual environment 420 and defines a plurality of
virtual nodes 501 associated with a plurality of hierarchical
tiers, and defines dependencies between the virtual nodes
501. According to an embodiment, at least one virtual node
501 can be associated with a tier, and a node in a tier can
depend only on another node that is associated with a lower
tier.

For example, FIG. 5A is a graphical representation of an
exemplary virtual topology 500« that includes virtual nodes
501a-501d associated with three (3) hierarchical tiers 510a-
510c¢. The virtual topology 500« includes a virtual base node
501a associated with a lowest base tier 510a, and virtual
nodes 5015-501d associated with at least one tier 5105, 510¢
hierarchically above the lowest base tier 510a. The virtual
base node 5014 is an independent node that does not depend
on another node, i.e., the virtual base node 501a hosts a
service/application that is not configured to invoke or depend
on other services/applications. An exemplary base node 501a
can be, in an embodiment, a database server, a mail server,
and/or an application server.

Virtual nodes 501¢-501c¢1 associated with higher tiers
5105, 510c above the lowest base tier 510a depend on at least
one node in at least one lower tier. For example, Node 3 5014
associated with tier 2 510c depends on Node 1 5015 and Node
2 501c¢, both associated with tier 1 5105, and Node 2 501c¢
depends on Base Node A 501qa associated with the base tier
510q. In an embodiment, when a node, e.g., Node 3 5014,
depends on another node, e.g., Node 1 5015, the dependent
node 5014 hosts an application/service that is configured to
invoke or depend on a service/application hosted by the other
node 5015. Thus, when the dependent node 5014 is provi-

US 9,256,473 B1

7

sioned, it must be configured with the other node’s connec-
tivity information to connect to the other node 50154. Exem-
plary dependent nodes can be, in an embodiment, web
servers, content management servers, application servers,
and/or proxy servers.

According to an embodiment, the virtual topology 5004 in
FIG. 5A can represent a simple web service environment,
where Base Node A 5014 is a database server, Node 1 5015
and Node 2 501c¢ are application servers, and Node 3 501d is
a proxy server. In this environment, the proxy server 5104
sends service requests to both of the application servers 5015,
501¢, which in turn, send requests to the database server
510a. Accordingly, the proxy server 5104 depends on the
applications servers 5015, 501¢, which depend on the data-
base server 501a.

According to an embodiment, an enterprise 410 can pro-
vide more than one virtual topology 500 corresponding to
more than one virtual environment 420. For example, differ-
ent virtual topologies 500 can be implemented for different
divisions or departments of an enterprise 410. In another
embodiment, the provisioning service 300 can be configured
to provision and manage another set of virtual environments
420aq for another enterprise 410a. The provisioning service
300 can be configured, in an embodiment, to receive the
virtual topology 500, 500" over the private and/or public net-
work 403, such as the Internet, via a network stack 302 in the
execution environment 301. The network stack 302 can be
configured to provide the virtual topology 500, 500" to a
communication protocol layer 303, which in turn can pass the
information to the virtual topology manager 310.

When the virtual topology, e.g., 5004, is received, the vir-
tual topology manager 310 can be configured, in an embodi-
ment, to analyze the virtual topology 500a to identify each
virtual node 501a-501d associated with each tier 510a-510c¢,
to determine which type of service/application each virtual
node hosts, and to determine dependencies between the nodes
501a-5014d. According to an embodiment, once the virtual
topology 500a has been analyzed, the node provisioning pro-
cess begins starting with nodes associated with the lowest
base tier 510a and continuing with nodes associated with a
next higher tier 51056 until all of the nodes 501a-501d are
provisioned.

Accordingly, with reference to FIG. 2, in block 202, a
virtual base node is provisioned using base configuration
information, which includes a base endpoint that identifies
interconnectivity parameters required to communicate with
the virtual base node. According to an embodiment, the pro-
visioning service 300 includes a provisioning handler com-
ponent 350 configured for provisioning a virtual base node,
e.g.,Base Node A 501q, using base configuration information
that includes a base endpoint that identifies interconnectivity
parameters required to communicate with the virtual base
node 501a.

In an embodiment, when the virtual topology, e.g., 5004, is
received and analyzed, the virtual topology manager 310 can
be configured to select a virtual base node, e.g., 5014, and to
invoke a node manager component 320 in the provisioning
service 300. The node manager component 320 can be con-
figured, in an embodiment, to retrieve a configuration tem-
plate 332 corresponding to the type of service/application
hosted by the virtual base node 501a. For example, when the
virtual base node 501a is a database server, the node manager
component 320 can be configured to retrieve a database con-
figuration template 332a from the configuration template
repository 330.

According to an embodiment, the configuration template
332 includes and/or identifies, in general, all data needed to

10

15

20

25

30

35

40

45

50

55

60

65

8

provision a virtual node 501 according to a service associated
with the configuration template 332. In an embodiment, the
configuration template 332 can include and/or identify the
appropriate software, e.g., operating system, middleware and
applications, for the service/application hosted by the virtual
node 501. For example, the database configuration template
332a can include and/or identify all data needed to provision
a database server, while the application configuration tem-
plate 3324 can include and/or identify all data needed to
provision an application server. In an embodiment, the node
manager 320 can be configured to use the retrieved configu-
ration template 332 to generate configuration information
322 for the service/application hosted by the virtual base node
501a.

In an embodiment, the node manager 320 can be config-
ured to generate a base endpoint 601a associated with the
virtual base node 501a that identifies interconnectivity
parameters associated with the virtual base node 5014 that are
required to communicate with the base node 501a. For
example, the interconnectivity parameters can identify a host,
a communication port, a communication protocol, a user-
name, and/or a password. In some cases, a connection URL
and/or an encryption type and keys can also be identified.
According to an embodiment, the base endpoint 601a of the
virtual base node 501a can be associated with the virtual base
node 501a because the combination of the interconnectivity
parameters is specific to the base node 501a.

According to an embodiment, the node manager 320 can be
configured to collect connectivity information relating to
other nodes 501 upon which the virtual base node 501a
depends. Nevertheless, because the virtual base node 501a is
associated with the lowest base tier 5104, it does not depend
on another node, and therefore, no such connectivity infor-
mation exists. According to an embodiment, the node man-
ager 320 can be configured to include the base endpoint 601a
in the configuration information 322 for the virtual base node
501a, and can be configured to provide the configuration
information 322 to the provisioning handler component 350.

According to an embodiment, the provisioning handler
component 350 can be configured to provision the virtual
base node 501a using the configuration information 322 for
the base node 501a received from the node manager 320. For
example, in an embodiment, the provisioning handler com-
ponent 350 can be configured to “load” the identified soft-
ware, e.g., the operation system, device drivers, middleware
and applications, to customize and configure the system and
the software to create a boot image for the server, and to
perform other provisioning tasks necessary to prepare the
virtual base node 501a for operation.

Referring again to FIG. 2, once the virtual base node 501a
is provisioned, the base endpoint 6014 is stored in an endpoint
registry 340 associated with the provisioning service 300 in
block 204. In an embodiment, the provisioning handler com-
ponent 350 can be configured to store the base endpoint 601a
in the endpoint registry 340 after it has provisioned the virtual
base node 5014. Alternatively, the node manager component
320 can be configured to copy the base endpoint 601a when it
is generated, and to store it in the endpoint registry 340.

In an embodiment, the provisioning handler 350 can be
configured to provision all virtual nodes 501 associated with
the lowest base tier 510a in the manner described above, and
to store each of the corresponding base endpoints 601 in the
endpoint registry 340. When each of the virtual nodes 501 in
the lowest base tier 510q are provisioned, the virtual topology
manager 310 can be configured to progress to a next tier
immediately above the completed base tier 510a, and to select

US 9,256,473 B1

9

avirtual first node, e.g., Node 1 5015, associated with the next
tier immediately above the base tier 510q, i.e., the first tier
5104, for provisioning.

Referring again to FIG. 2, when a virtual first node 501¢ is
selected, the virtual topology manager 310 can be configured
to determine, in block 206, that the virtual first node 5015
depends on the virtual base node 501a. According to an
embodiment, the virtual topology manager 310 can be con-
figured to make this determination based on the virtual topol-
ogy, e.g., 500a, which as stated above, defines the dependen-
cies between the virtual nodes 501a-501d. For example, the
virtual topology 500a represented in FIG. 5A indicates that
the virtual first node, e.g., Node 1 5015, depends on the virtual
base node, Base Node A 501a. Once the virtual first node
5015 is selected and its dependency determined, the virtual
topology manager 310 can invoke the node manager compo-
nent 320.

In an embodiment, when invoked, the node manager com-
ponent 320 can retrieve a configuration template 332 corre-
sponding to the type of service/application hosted by the
virtual first node 5015, and can use the retrieved configuration
template 332 to generate configuration information 322 for
the service/application hosted by the virtual first node 5015. A
first endpoint 6015 associated with the virtual first node 5015
is also generated and included in the configuration informa-
tion 322. Similar to the base endpoint 601a, the first endpoint
60154 identifies interconnectivity parameters associated with
the virtual first node 5015 that are required to communicate
with the virtual first node 5015.

As stated above, in addition to generating the endpoint 601,
the node manager component 320 collects connectivity infor-
mation relating to node(s) 501 on which the virtual first node
5015 depends. In this case, the virtual first node 5015 depends
on the virtual base node 501a, and therefore, the connectivity
information relating to the virtual base node 501ais collected.
In an embodiment, the base endpoint 601« includes the con-
nectivity information relating to the virtual base node 501a.

Accordingly, referring again to FIG. 2, the node manager
component 320 is configured to retrieve the base endpoint
601a associated with the virtual base node 501a from the
endpoint registry 340 in block 208. In an embodiment, the
node manager 320 can be configured to provide the retrieved
base endpoint 601a and the configuration information 322 for
the virtual first node 5015 to the provisioning handler com-
ponent 350, which is configured for provisioning the virtual
first node 50154 in block 210. According to an embodiment,
the first configuration information 322 for the virtual first
node 5015 and the base endpoint 601a are used to provision
the virtual first node 5015. As described above, once the
virtual first node 5015 is provisioned, the first endpoint 6015
is stored in the endpoint registry 340 along with the base
endpoint 601a.

FIG. 6A is a graphical representation of the provisioning of
the base virtual node, e.g., Base Node A 5014, the virtual first
node, e.g., Node 15015, and a virtual second node, e.g., Node
2 501¢, of FIG. 5A. As is shown in FIG. 6 A, Node 15015 is
provisioned using Endpoint A 601a associated with Base
Node A 5014 on which Node 15015 depends (as indicated by
the solid arrow from Endpoint A 601a to Node 1 5015). In
addition, Endpoint 1 6015 associated with Node 1 5015 is
stored in the endpoint registry 340 (as indicated by the dashed
arrow from Node 1 5015 to Endpoint 1 6015).

In an embodiment, the provisioning handler 350 can be
configured to provision the virtual second node, e.g., Node 2
501c, in the manner described above with regard to the virtual
firstnode 5015. As is shown in the topology 500a represented
inFIG.5A, Node 15015 and Node 2 501¢ depend on the same

20

25

30

40

45

10

virtual base node, e.g., Base Node A 501a, and therefore, base
Endpoint A 601a is retrieved again and used again to provi-
sion Node 2 501c¢, as is shown in FIG. 6A. As described
above, once the virtual second node 501c¢ is provisioned, its
endpoint 601c is stored in the endpoint registry 340 along
with the Endpoint 1 6015 and base Endpoint A 601a.

As before, the provisioning handler 350 can be configured
to provision all virtual nodes 501 associated with the first tier
5105 in the manner described above, and to store each of the
corresponding base endpoints 601 in the endpoint registry
340. When each of the virtual nodes 501 in the first tier 5105
are provisioned, the virtual topology manager 310 can be
configured to provision virtual nodes 501 associated with a
second tier 510c¢ immediately above the completed first tier
5105.

For example, referring again to the topology 5004 in FIG.
5A, the virtual topology manager 310 can be configured to
select a virtual third node, e.g., Node 3 5014, associated with
the second tier 51054, and to determine, based on the topology
500aq, that Node 3 5014 depends on two virtual nodes, Node
15015 and Node 2 501¢, in a lower tier 51054. In this case, two
endpoints, Endpoint 1 6015 and Endpoint 2 601c, are
retrieved and used to provision Node 3 5014, as is shown in
FIG. 6B. Once the virtual third node 5014 is provisioned, its
endpoint 6014 is stored in the endpoint registry 340 along
with the other endpoints 601a-601c.

In an embodiment, when each of the virtual nodes 501 in a
tier are provisioned, the virtual topology manager 310 can be
configured to provision virtual nodes 501 associated with a
next tier immediately above the completed tier, and to con-
tinue with each progressively higher tier until each of the
plurality of virtual nodes 501 of the virtual environment 420
is provisioned. When provisioning of the virtual environment
420 is completed, endpoints 601 associated with each of the
plurality of virtual nodes 501 are stored in the endpoint
repository 340. Accordingly, when the virtual topology 500
of the virtual environment 420 is modified, and the depen-
dencies between the nodes 501 are changed, the provisioning
service 300 can easily reprovision the virtual environment
420 by receiving and using the appropriate endpoints 601 to
reprovision the affected virtual nodes 501.

For example, FIG. 5B is a graphical representation of
another virtual topology 5005 where Node 2 501¢ depends on
Node 1 5015, and Node 1 5015 depends on Base Node A
501a. FIG. 6C is a graphical representation of the provision-
ing of the virtual nodes 501a-501c¢ of FIG. 5B, and illustrates
that Node 1 5015 is provisioned using Endpoint A 601a of
Base Node A 501a, and Node 2 501c¢ is provisioned using
Endpoint 1 6015 of Node 1 5015. In an embodiment, the
topology 5005 can be modified so that Node 2 501¢ depends
on Base Node A 501 in addition to Node 1 5015. FIG. 5C is
a graphical representation of the modified topology 500c.
When the provisioning service 300 receives an indication
modifying the topology in this manner, the provisioning ser-
vice 300 can automatically reprovision the affected node,
e.g., Node 2 501¢, by receiving the endpoints 601 of Base
Node A 501a and Node 1 5015 from the endpoint registry
340, and using the retrieved endpoints 601a, 6015 to repro-
vision Node 2 501¢. FIG. 6D graphically illustrates the repro-
visioning of Node 2 501¢ according to an exemplary embodi-
ment.

According to aspects of exemplary embodiments, an end-
point that identifies interconnectivity parameters required to
communicate with a virtual node is generated for each of a
plurality of virtual nodes in a virtual environment, and is
stored in an endpoint repository. Using the endpoints, any
virtual environment represented by a virtual topology can be

US 9,256,473 B1

11

easily and automatically provisioned. Moreover, when the
virtual topology is modified, the affected nodes can be repro-
visioned easily and automatically as well.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the subject matter (par-
ticularly in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by context.
Recitation of ranges of values herein are merely intended to
serve as a shorthand method of referring individually to each
separate value falling within the range, unless otherwise indi-
cated herein, and each separate value is incorporated into the
specification as if it were individually recited herein. Further-
more, the foregoing description is for the purpose of illustra-
tion only, and not for the purpose of limitation, as the scope of
protection sought is defined by the claims as set forth here-
inafter together with any equivalents thereof entitled to. The
use of any and all examples, or exemplary language (e.g.,
“such as”) provided herein, is intended merely to better illus-
trate the subject matter and does not pose a limitation on the
scope of the subject matter unless otherwise claimed. The use
of the term “based on” and other like phrases indicating a
condition for bringing about a result, both in the claims and in
the written description, is not intended to foreclose any other
conditions that bring about that result. No language in the
specification should be construed as indicating any non-
claimed element as essential to the practice ofthe invention as
claimed.

Preferred embodiments are described herein, including the
best mode known to the inventor for carrying out the claimed
subject matter. Of course, variations of those preferred
embodiments will become apparent to those of ordinary skill
in the art upon reading the foregoing description. The inven-
tor expects skilled artisans to employ such variations as
appropriate, and the inventor intends for the claimed subject
matter to be practiced otherwise than as specifically described
herein. Accordingly, this claimed subject matter includes all
modifications and equivalents of the subject matter recited in
the claims appended hereto as permitted by applicable law.
Moreover, any combination of the above-described elements
in all possible variations thereof is encompassed unless oth-
erwise indicated herein or otherwise clearly contradicted by
context.

What is claimed is:

1. A method for automatically provisioning a virtual com-
puting environment comprising a plurality of virtual comput-
ing nodes, the method comprising:

receiving, a virtual topology associated with at least one

virtual environment, the virtual topology comprising a
plurality of virtual nodes;
analyzing the received virtual topology to identify depen-
dencies between the plurality of nodes and at least one of
a service and an application hosted by each virtual node;

identifying a virtual base node from the virtual topology,
the virtual base node being one of the plurality of virtual
nodes;

provisioning the identified virtual base node using base

configuration information, wherein the base configura-
tion information includes a base endpoint that identifies
interconnectivity parameters required to communicate
with the virtual base node;

storing the base endpoint in an endpoint registry;

determining, from the virtual topology, that a virtual first

node depends on the virtual base node;

retrieving the base endpoint from the endpoint registry

based on the determination that the virtual first node
depends on the virtual base node;

20

40

45

50

65

12

provisioning the virtual first node using the retrieved base
endpoint and first configuration information for the vir-
tual first node, the first configuration information includ-
ing a first endpoint; and

storing a first endpoint in the endpoint registry.

2. The method of claim 1 further comprising:

determining that a virtual second node also depends on the

virtual base node;

receiving the base endpoint from the endpoint registry; and

provisioning the virtual second node using the retrieved

base endpoint and second configuration information for
the virtual second node.

3. The method of claim 2 wherein the first endpoint iden-
tifies interconnectivity parameters required to communicate
with the virtual first node, and the second configuration infor-
mation includes a second endpoint that identifies intercon-
nectivity parameters required to communicate with the sec-
ond virtual node, the method further comprising storing the
first endpoint and the second endpoint in the endpoint regis-
try.

4. The method of claim 3 further comprising:

determining that a virtual third node depends on the virtual

first node and the virtual second node;

receiving the first endpoint and the second endpoint from

the endpoint registry; and

provisioning the virtual third node using the retrieved first

endpoint and second endpoint, and third configuration
information for the virtual third node.

5. The method of claim 4 wherein the virtual third node
represents a proxy server, the virtual first and second nodes
represent first and second application servers, and the virtual
base node represents a database server.

6. The method of claim 1 wherein the first endpoint iden-
tifies interconnectivity parameters required to communicate
with the virtual first node.

7. The method of claim 6 further comprising:

determining that a virtual second node depends on the

virtual first node;

receiving the first endpoint from the endpoint registry; and

provisioning the virtual second node using the retrieved

first endpoint, and second configuration information for
the virtual second node.

8. The method of claim 7 further comprising:

receiving an indication that the virtual second node

depends on the virtual base node and on the virtual first
node;

receiving the base endpoint and the first endpoint from the

endpoint registry; and

reprovisioning the virtual second node using the retrieved

endpoints.

9. The method of claim 1 wherein the interconnectivity
parameters identify at least one of a host, a port, a protocol, a
username, and a password.

10. A computer program product comprising a non-transi-
tory machine-readable medium carrying one or more
sequences of instructions for automatically provisioning a
virtual computing environment comprising a plurality of vir-
tual computing nodes, which instructions, when executed by
one or more processors, cause the one or more processors to
carry out the steps of:

receiving, a virtual topology associated with at least one

virtual environment, the virtual topology comprising a
plurality of virtual nodes;

analyzing the received virtual topology to identify depen-

dencies between the plurality of nodes and at least one of
a service and an application hosted by each virtual node;

US 9,256,473 B1

13

identifying a virtual base node from the virtual topology,
the virtual base node being one of the plurality of virtual
nodes;

provisioning the identified virtual base node using base

configuration information, wherein the base configura-
tion information includes a base endpoint that identifies
interconnectivity parameters required to communicate
with the virtual base node;

storing the base endpoint in an endpoint registry;

determining, from the virtual topology, that a virtual first

node depends on the virtual base node;

retrieving the base endpoint from the endpoint registry

based on the determination that the virtual first node
depends on the virtual base node;

provisioning the virtual first node using the retrieved base

endpoint and first configuration information for the vir-
tual first node, the first configuration information includ-
ing a first endpoint; and

storing a first endpoint in the endpoint registry.

11. A system for automatically provisioning a virtual com-
puting environment comprising a plurality of virtual comput-
ing nodes, the apparatus comprising:

a processor; and

one or more stored sequences of instructions which, when

executed by the processor, cause the processor to carry
out the steps of:

receiving, a virtual topology associated with at least one

virtual environment, the virtual topology comprising a
plurality of virtual nodes;
analyzing the received virtual topology to identify depen-
dencies between the plurality of nodes and at least one of
a service and an application hosted by each virtual node;

identifying a virtual base node from the virtual topology,
the virtual base node being one of the plurality of virtual
nodes;

provisioning the identified virtual base node using base

configuration information, wherein the base configura-
tion information includes a base endpoint that identifies
interconnectivity parameters required to communicate
with the virtual base node;

storing the base endpoint in an endpoint registry;

determining, from the virtual topology, that a virtual first

node depends on the virtual base node;

retrieving the base endpoint from the endpoint registry

based on the determination that the virtual first node
depends on the virtual base node;

provisioning the virtual first node using the retrieved base

endpoint and first configuration information for the vir-
tual first node, the first configuration information includ-
ing a first endpoint; and

storing a first endpoint in the endpoint registry.

12. The system of claim 11 further comprising stored
instructions for:

determining that a virtual second node also depends on the

virtual base node;

10

15

20

25

30

35

40

45

14

receiving the base endpoint from the endpoint registry; and

provisioning the virtual second node using the retrieved

base endpoint and second configuration information for
the virtual second node.

13. The system of claim 12 wherein first endpoint that
identifies interconnectivity parameters required to communi-
cate with the virtual first node, and the second configuration
information includes a second endpoint that identifies inter-
connectivity parameters required to communicate with the
second virtual node, the system further comprising stored
instructions for storing the first endpoint and the second end-
point in the endpoint registry.

14. The system of claim 13 further comprising stored
instructions for:

determining that a virtual third node depends on the virtual

first node and the virtual second node;

receiving the first endpoint and the second endpoint from

the endpoint registry; and

provisioning the virtual third node using the retrieved first

endpoint and second endpoint, and third configuration
information for the virtual third node.

15. The system of claim 14 wherein the virtual third node
represents a proxy server, the virtual first and second nodes
represent application servers, and the virtual base node rep-
resents a database server.

16. The system of claim 15 wherein the virtual base node is
provisioned prior to provisioning any virtual nodes that
depend on the virtual base node, and the virtual first node is
provisioned prior to provisioning any virtual nodes that
depend on the virtual first node.

17. The system of claim 11 wherein the first configuration
information includes a first endpoint that identifies intercon-
nectivity parameters required to communicate with the vir-
tual first node.

18. The system of claim 17 further comprising stored
instructions for:

determining that a virtual second node depends on the

virtual first node;

receiving the first endpoint from the endpoint registry; and

provisioning the virtual second node using the retrieved

first endpoint, and second configuration information for
the virtual second node.

19. The system of claim 18 further comprising stored
instructions for:

receiving an indication that the virtual second node

depends on the virtual base node and on the virtual first
node;

receiving the base endpoint and the first endpoint from the

endpoint registry; and

reprovisioning the virtual second node using the retrieved

endpoints.

20. The system of claim 11 wherein the interconnectivity
parameters identify at least one of a host, a port, a protocol, a
username, and a password.

#* #* #* #* #*

